Module Name : MSc Computer Science-E Exam Date : 19-Sep-2020 Batch : 16:00-18:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
Object	tive Question			
	1	RAD model has phases	4.0	1.00
		A1 6		
		A2 5		
		A3 4 :		
		A4 3 :		
)biect	tive Question			
	2	Expand CMMI.	4.0	1.00
		Al Capability Maturity Model Integration		
		A2 Capability Model Maturity Integration		
		A3 Capability Maturity Model Instructions		
		A4 Capability Maturity Model Instructions		
)hiect	tive Question			
	3	Which one of the Software-end factors affecting maintenance Cost?	4.0	1.00
		A1 Structure of Software Program		
		A2 Programming Language:		
		A3 Dependence on external environment:		
		A4 All of these		
)hiect	tive Question			
	4	Which is the most important feature of spiral model?	4.0	1.00
		A1 Quality management		

A3 Risk management A4 Efficiency management ective Question 5 Knowledge of software program, design and structure is essential in? A1 Blackbox Testing :	4.0	
ective Question 5	4.0	
5 Knowledge of software program, design and structure is essential in?	4.0	
	4.0	
Al Blackbox Testing		1.00
A2 Whitebox Testing:		
A3 Integration Testing		
A4 None of these		
ective Question		
Which one of the following is not a fundamental activity for software processes in software engineering?	4.0	1.00
Al Software Verification		
A2 Software Validation		
A3 Software design and Implementation		
A4 Software Evolution		
ective Question		
7 An effective risk management plan will need to address which one of the following issues?	4.0	1.00
A1 Risk Avoidance		
A2 Risk Monitoring		
A3 Contingency Planning		
A4 All of these		
A4 All of these ective Question 8 Line of code (LOC) can be used to normalize quality and/or productivity measure for	4.0	1.00

		A2 Function point metrics. A3 Extended function point metrics		
		A4 All of these		
Object	ive Question			
9	9	In a time-sharing operating system, when the time slot given to a process is completed, the process goes from the running state to the	4.0	1.00
		A1 Blocked State:		
		A2 Ready State :		
		A3 Suspended State:		
		A4 Terminated State :		
Object	ive Question			
10	10	When several processes access the same data concurrently and the outcome of the execution depends on the particular order in which the access takes place, is called?	4.0	1.00
		Al Dynamic Condition		
		A2 Race Condition		
		A3 Essential Condition		
		A4 Critical Condition		
Object	ive Question			
11	11	The remote method invocation	4.0	1.00
		Al Allows a process to invoke memory on a remote object		
		A2 Allows a thread to invoke a method on a remote object		
		A3 : Allows a thread to invoke memory on a remote object		
		A4 Allows a process to invoke a method on a remote object:		

Objec	tive Question			
12	12	Which of the following algorithms tends to minimize the process flow time?	4.0	1.00
		Al First Come First Served :		
		A2 Shortest Job First		
		A3 Earliest Deadline First		
		A4 Longest Job First		
Objec	tive Question			
13	13	A minimum of variable(s) is/are required to be shared between processes to solve the critical section problem.	4.0	1.00
		Al One		
		A2 Two		
		A3 Three:		
		A4 Four		
Obiec	etive Question			
14	14	Operating System maintains the page table for	4.0	1.00
		Al Each Process		
		A2 Each Thread :		
		A3 Each Instruction		
		A4 Each Address		
Objec	etive Question			
15	15	A multilevel page table is preferred in comparison to a single level page table for translating virtual address to physical address because	4.0	1.00
		A1 It Reduces the Memory Access Time to Read or Write a Memory Location		
		A2 It Helps to Reduce the Size of Page Table Needed to Implement the Virtual Address Space of a Process		

1		A4 It Helps to Reduce the Number Of Page Faults in Page Replacement Algorithms		
	tive Question			
	16	The interval from the time of submission of a process to the time of completion is termed as	4.0	1.00
		A1 Waiting Time		
		A2 Turnaround Time		
		A3 Response Time		
		A4 Throughput :		
	tive Question			
17	17	In C programming language, which of the following type of operations have the highest precedence	4.0	1.00
		A1 Relational Operator		
		A2 Equality operators		
		A3 Arithmetic operators		
		A4 Logical operators		
	tive Question			
	18	The output of	4.0	1.00
		{		
		int $a = 5$;		
		int b = 10;		
		cout << (a>b?a.b);		
		}		
		A1 5 :		
		A2 10		
		A3 Syntax error:		
		A4 None of these		
Object	tive Question			
	19	Bitwise operators can operate upon?	4.0	1.00
		A1 double and chars		

		A2 floats and doubles		
		A3 ints and floats		
		A4 ints and chars		
Object	tive Question			
	20	Which of the following language feature is not an access specifier in C++?	4.0	1.00
		Al Public :		
		A2 Private:		
		A3 Protected:		
		A4 internal :		
Object	tive Question	<u>JI</u>		
21	21	In the following function:	4.0	1.00
		int f (int n) {		
		int v;		
		v = 2*n+1;		
		retum v;		
		}		
		What is the storage class of variable v?		
		A1 static:		
		A2 dynamic :		
		A3 contextual :		
		A4 automatic :		
Ohiec	tive Question			
	22	Consider the following statements:	4.0	1.00
		int *p; int i, k;		
		III 1, K,		
		$ \mathbf{i} = 142;$		
		$ \mathbf{k} = \mathbf{i};$		
		1 = 142; k = i; p = &i Which of the following statements changes the value of i to 143?		

Objective Question	A2 $*k = 143;$ A3 $p = 143;$		
Dijective Question			
hiective Question	Α4		
Objective Question	$A^{4} *p = 143;$		
- Speciare Question			
23 23	Consider this piece of code:	4.0	1.00
	void mysterious(int i, int &k) {		
	i = 1;		
	k = 2;		
	}		
	int main () {		
	int x = 0;		
	mysterious (x, x);		
	cout << x << endl;		
	return 0;		
	}		
	What is the value of x that gets printed by the main?		
	A1 0		
	A2 1		
	A3 ₂		
	A4 None of these		
Objective Question			
4 24	What is the value of k after the following code fragment?	4.0	1.00
	$\operatorname{int} \mathbf{k} = 0$;		
	int n = 12		
	while (k < n)		
	{ k = k + 1;		
	}		
	A1 0		
	A2 11		

		A3 12 :		
		A4 unknown		
	ctive Question			
	25	What will be the output of the following C++ code?	4.0	1.00
		#include <iostream></iostream>		
		#include <fstream></fstream>		
		using namespace std;		
		int main ()		
		{		
		ofstream outfile ("test.txt");		
		for (int $n = 0$; $n < 100$; $n++$)		
		{		
		outfile << n;		
		outfile.flush();		
		}		
		cout << "Done";		
		outfile.close();		
		return 0;		
		}		
		A 1		
		Al Done		
		A2 Error		
		A3 Runtime error		
		A4 DoneDoneDone :		
	ctive Question		4.0	1.00
20	20		4.0	1.00

		What is the output of the following code?		
		#include		
		void main()		
		{		
		int s=0;		
		while(s++<10)> # define a 10		
		main()		
		{		
		printf("%d",a);		
		foo();		
		printf("%d",a);		
		<pre>void foo()</pre>		
		{		
		#undef a		
		#define a 50		
		}		
		A1 1010		
		A2 1050		
		: 1050		
		A3		
		A3 Error:		
		A4 ₀		
Objec	ctive Question			
27	27	Which of the following is not a property of transactions?	4.0	1.00
		A1 Atomicity		
		A2 Concurrency		
		A3 Isolation		
		A3 Isolation		
		A4 Durability		
	ctive Question			
28	28	By default SQL server has isolation level	4.0	1.00
		READ COMMITTED		
		A2 READ UNCOMMITTED		
		A3		
		A3 SERIALIZABLE :		

Obiec	tive Question	A4 REPEATABLE READ:		
29	29	Table on the many side of a one to many or many to many relationship must:	4.0	1.00
		A1 Be in Second Normal Form (2NF)		
		A2 Be in Third Normal Form (3NF)		
		A3 Have a single attribute key		
		A4 Have a composite key		
Objec	tive Question			
30	30	In of Oracle, the database administrator creates a user account in the database for each user who needs access.	4.0	1.00
		Al Database Authentication		
		A2 Operating System Authentication		
		A3 Internal Authentication		
		A4 External Authentication :		
Objec	tive Question			
	31	Decision Nodes are represented by	4.0	1.00
		A1 Ellipse		
		A2 Dashed ellipse		
		A3 Rectangle		
		A4 Squares		
Objec	tive Question			
32	32	Which forms simplifies and ensures that there is minimal data aggregates and repetitive groups:	4.0	1.00
		Al INF:		
		A2 2NF		

		A3 3NF :		
		A4 All of these		
	tive Question			
33	33	A line of PL/SQL text contains groups of characters known as	4.0	1.00
		A1 Lexical Units		
		A2 Literals		
		A3 Textual Units		
		A4 Identifiers		
Object	tive Question			
	34	is a sequence of zero or more characters enclosed by single quotes.	4.0	1.00
		Al Integers literal :		
		A2 String literal:		
		A3 String units:		
		A4 String label		
Object	tive Question			
	35	The navigator object is particularly used to determine what browser is being supported to	4.0	1.00
		Al View a page		
		A2 View a website		
		A3 View a web browser:		
		A4 None of these:		
Object	tive Question			
	36	Which of the statements is/are true? I. PHP language provides you lot of security II. PHP enables you to write code using HTML and JavaScript to create a dynamic web site III. PHP is a server and client-side scripting language	4.0	1.00

		:		
		A2 both I and III		
		A3 I, II, and III		
		A4 None of these		
Objec	tive Question			
37	37	The AJAX is used to control the	4.0	1.00
		A1 : Functionality		
		A2 Code layout		
		A3 Ideology		
		A4 All of these		
	tive Question			
38	38	Consider the following syntax:	4.0	1.00
		<map name="World Map"></map>		
		<area .<="" coords="0.0,100, 200" href="homepage.html" td=""/> <td></td> <td></td>		
		When would you use the above syntax?		
		A1 When defining an image map		
		A2 When referring back to home.html		
		A3 When referring to world map		
		A4 When embedding a graphic in JavaScript		
Ohiac	etive Question			
39	39	Which of the following statements is false regrading "cookies"?	4.0	1.00
		A1 Cookies are programs		
		A2 Cookies have the potential of being used to violate the privacy of users:		
		A3 Cookies are very helpful in keeping track of users in developing online shopping cart applications, personalized portals and in advertising on websites.		

		A4 Cookies cannot contain more than 4kb of data		
		i:		
Objec	tive Question			
10	40	HTML metadata includes	4.0	1.00
		A1 1,2		
		A3		
		A3 1,2,3		
		A4 None of these		
	tive Question			
4 1	41	Which of the following statements are incorrect regarding multimedia on the web?	4.0	1.00
		A1 The MPEG, AIFF, and WAV are cross platform formats		
		A2 The MPED,AU and MIDI are cross-platform formats		
		A3 : The SND format has a relatively low fidelity		
		A4 VRML can be used to model and display 3D interactive graphics		
Objec	tive Question			
2	42	Which of the following statements is/are true?	4.0	1.00
		P: An XML document with correct syntax as specified by W3C is called "Well Formed".		
		Q: An XML documented validated against a DTD is both "Well formed" and "valid".		
		R: <xml encoding=" UTF-8" version="1.0"> is syntactically correct declaration for the version of an XML document.</xml>		
		Select the correct answer from the options given below:		
		A1 P and Q only		
		A2 P and R only		
		A3 Q and R only		
		A4 All of P, Q and R		
bjec	tive Question			
-	43	Which of the following is NOT a method of calling functions	4.0	1.00

	,			
		A1 Call By Value		
		A2 Call By Reference		
		A3 Recursion:		
		A4 Regular Expression		
N-i anti	ive Question			
	44	Identify the odd item	4.0	1.00
		A1 sizeof		
		A2 !		
		A3 ++		
		A4 * :		
Objection	ive Question			
	45	Identify the type of inheritance shown in the following code snippet class allrounder: public batsman, public bowler	4.0	1.00
		A1 Hierarchical		
		A2 Multilevel :		
		A3 Multiple		
		A4 General :		
Ohiecti ⁻	ive Question			
	46	GCC stands for	4.0	1.00
		A1 GNU Compiler Collection		
		A2 General Class Compiler :		
		A3 Great Compiler for C		

```
Objective Question
                                                                                                                                                    4.0
                                                                                                                                                            1.00
                       #include<iostream>
                       using namespace std;
                       int x = 1;
                       int main()
                       {
                         int x = 2;
                         {
                           int x = 3;
                           cout \le ::x \le endl;
                        return 0;
                      }
                      A1
:
                      A2 2
                      A3 3
                      A4
: 123
Objective Question
     48
                                                                                                                                                    4.0
                                                                                                                                                            1.00
                       #include<iostream>
                       using namespace std;
                       class A
                       {
                        ~A0{
                        cout << "Destructor called \n";
                        }
                       };
                       int main()
                       {
                         Aa;
                        return 0;
                       }
                      A1 Destructor called:
                      ^{\mathrm{A2}}_{\mathrm{:}} Nothing will be printed
                       A3 Error
```

	11		II	11
		A4		
		A4 Segmentation fault		
~				
Objec 49	tive Question		4.0	1.00
7)		#include <iostream></iostream>	7.0	1.00
		using namespace std;		
		int x[100];		
		int main()		
		{ cout << x[99] << endl;		
		}		
		A1 Garbage value :		
		A2 0		
		A3 99 :		
		A4 Error		
		: Error		
)hiaa	tive Question			
50	50	Which of the following is accessed by a member function of a class?	4.0	1.00
		A1 The object of that class:		
		A2 All members of a class		
		A3 TI LI C L		
		A3 The public part of a class:		
		A4 The private part of a class:		
Objec 51	tive Question	What is the size of a character literal in C and C++?	4.0	1.00
		what is the size of a character ineral in C and C++?		
		A1		
		A2 1 and 4		
		A3 1 and 1		
		-		
		A4 4 and 4		

52 52	What is the size of a character type in C and C++?	4.0	1.00
	A1 4 and 1		
	A2 1 and 4		
	A3 1 and 1		
	A4 4 and 4 :		
Objective Question			
53 53	Which one of the following is the tightest upper bound that represents the number of swapsrequired to sort n numbers using selection sort?	4.0	1.00
	Al O(log n)		
	A2 O(n)		
	A3 O(n log n)		
	A4 O(n ²)		
Objective Question			
54 54	Worst case time complexity of linear search algorithm is	4.0	1.00
	A1 O(n)		
	A2 O(n ²)		
	A3 O(2n ²)		
	A4 O(2n)		
Objective Question			
55 55	You have an array of n elements. Suppose you implement quicksort by always choosing the central element of the array as the pivot. Then the tightest upper bound for the worst case performance is	4.0	1.00
	A1 : O(n ²)		
	A2 O(nLogn)		
	A3 Θ(nLogn)		
	•		

		$: O(n^3)$		
Obje-	ctive Question			
56	56	What is direct addressing?	4.0	1.00
		A1 Distinct array position for every possible key		
		A2 Fewer array positions than keys		
		A3 Fewer keys than array positions		
		A4 Both b and c based on datatypes		
Ohioo	ctive Question			
5 7	57	Which of the following standard algorithms is not a Greedy algorithm?	4.0	1.00
		A1 Dijkstra's shortest path algorithm		
		A2 Prim's algorithm		
		A3 Kruskal algorithm		
		A4 Bellmen Ford Shortest path algorithm		
	ctive Question			
58	58	Consider the problem of searching an element x in an array 'arr[]' of size n. The problem can be solved in O(Logn) time if. 1) Array is sorted. 2) Array is sorted and rotated by k. k is given to you and k <= n. 3) Array is sorted and rotated by k. k is NOT given to you and k <= n. 4) Array is not sorted.	4.0	1.00
		A1 1 Only		
		A2 1 & 2 only		
		A3 : 1, 2 and 3 only		
		A4 1, 2, 3 and 4		
Objec	ctive Question			
59	59	The number of elements that can be sorted in $\Theta(\log n)$ time using heap sort	4.0	1.00
		is		
		A1 Θ(1):		

	$\Theta(\operatorname{sqrt}(\operatorname{dogn}))$		
	A3 $\Theta(\text{Log n}/(\text{Log Log n}))$		
	A4 Θ(Log n)		
Objective Question 60		4.0	1.00
00	Consider the following function.	4.0	1.00
	int unknown(int n) {		
	int i, j, k = 0;		
	for $(i = n/2; i \le n; i++)$		
	for $(j = 2; j \le n; j = j * 2)$		
	k = k + n/2;		
	retum k;		
	}		
	A1 \(\theta(n^2)\)		
	: "(
	A2 Θ(n^2Logn)		
	A3 Q(p^3)		
	A3 Θ(n^3)		
	A4 Θ(n^3Logn)		
	: O(li 5Logii)		
Objective Question	THE LOCAL SYSTEM OF THE STATE O	4.0	1.00
01	The only function of NOT gate is to	4.0	1.00
	A1		
	Al Stop signal		
	A2 ,		
	A2 Invert input signal		
	A3 Act as a Universal Gate		
	:		
	A4 None of these		
biective Question			1.00
Objective Question 2 62	An OR gate has 6 inputs. The number of input words in its truth table are	4.0	
	An OR gate has 6 inputs. The number of input words in its truth table are	4.0	
		4.0	
	An OR gate has 6 inputs. The number of input words in its truth table are A1 6 :	4.0	
		4.0	
	A1 6 :	4.0	
		4.0	
	A1 6 A2 32	4.0	
	A1 6 :	4.0	

		A4 128		
)hia-	etive Question			
Эвјес 63	63	A debouncing circuit is	4.0	1.00
		A1 An astable MV		
		A2 A bistable MV		
		A3 A latch		
		A4 A monostable MV		
Objec 64	etive Question		4.0	1.00
J -1	04	NAND gates are preferred over others because these	4.0	1.00
		A1 Have lower fabrication area		
		A2 Can be used to make any gate		
		A3 Consume least electronic power		
		•		
		A4 Provide maximum density in a Chip		
		:		
	tive Question			
55	65	Excess-3 code is known as	4.0	1.00
		Al Weighted code		
		: weighted code		
		A2 Cyclic Redundancy Code		
		: Cyche Redundancy Code		
		A3 Sale Complementing Code		
		A3 Self-Complementing Code		
		A4		
		A4 Algebraic Code		
Obiec	etive Question			
56	66	Assuming 8 bits for data, 1 bit parity, I start bit and 2 stop bits, the number of Characters that 1200 BPS communication line	4.0	1.00
		can transmit is.		
		A1 : 10 CPS.		
		A2 120 CPS.		

	A3 12 CPS.		
	A4 None of these		
Objective Questi	ion		
67 67	An AND gate will function as OR if	4.0	1.00
	All the inputs to the gates are "1"		
	A2 All the inputs are "0"		
	A3 Either of the inputs is "1"		
	A4 All the inputs and outputs are complemented:		
Objective Questi	ion		
68 68	Which is the correct order of sequence for representing the input values in K-map?	4.0	1.00
	A1 (00,01,10,11)		
	A2 (00,10,01,11)		
	A3 (00,01,11,10)		
	A4 (00,10,11,01)		
Objective Questi	ion		
69 69	An n-bit microprocessor has	4.0	1.00
	A1 n-bit program counter		
	A2 n-bit address register		
	A3 n-bit ALU		
	A4 n-bit instruction register:		
Objective Questi	ion		
70 70	'Aging registers' are	4.0	1.00
	A1 Counters which indicate how long ago their associated pages have been referenced.		
	A2 Registers which keep track of when the program was last accessed.		

		A3 Counters to keep track of last accessed instruction.		
		A4 Counters to keep track of the latest data structures referred.		
hiec	ctive Question			
71	71	The instruction 'ORG O' is a	4.0	1.00
		A1 Machine Instruction.		
		A2 Pseudo instruction.		
		A3 High level instruction.		
		A4 Memory instruction.		
 Objec	ctive Question			
2	72	MIMD stands for	4.0	1.00
		Al Multiple instruction multiple data		
		A2 Multiple instruction memory data		
		A3 Memory instruction multiple data		
		A4 Multiple information memory data		
Objec	ctive Question			
13	73	The load instruction is mostly used to designate a transfer from memory to a processor registerknown as	4.0	1.00
		Al Accumulator		
		A2 Instruction Register:		
		A3 Program counter:		
		A4 Memory address Register		
Objec	ctive Question			
74	74	The communication between the components in a microcomputer takes place via the addressand	4.0	1.00
		Al I/O bus		

	**			
		A2 Data bus		
		A3 Address bus		
		A4 Control lines		
Objec	ctive Question			
75	75	MRI indicates	4.0	1.00
		A1 Memory Reference Information.		
		A2 Memory Reference Instruction.		
		A3 Memory Registers Instruction.		
		A4 Memory Register information :		
	ctive Question		<u></u>	
76	76	In a vectored interrupt	4.0	1.00
		A1: the branch address is assigned to a fixed location in memory.		
		A2 the interrupting source supplies the branch information to the processor through an interrupt vector.		
		A3 the branch address is obtained from a register in the processor		
		A4 the branch address is obtained from cache memory:		
	ctive Question			
77	77	In segmentation, each address is specified by	4.0	1.00
		A1 A Segment Number & Offset		
		A2 An Offset & Value		
		A3 A Value & Segment Number		
		A4 A Key & Value		
Objec	ctive Question			
78	78	What is right way to Initialization array?	4.0	1.00

		A1 int num[6] = { 2, 4, 12, 5, 45, 5 }		
		A2 int $n\{\} = \{2, 4, 12, 5, 45, 5\}$		
Objec	tive Question			
79	79	What is the work of break keyword?	4.0	1.00
		A1 Halt execution of program:		
		A2 Restart execution of program		
		A3 Exit from loop or switch statement:		
		A4 None of these:		
Objec	tive Question			
80	80	What will happen if in a C program you assign a value to an array element whose subscript exceeds the size of array?	4.0	1.00
		A1 The element will be set to 0.		
		A2 The compiler would report an error.		
		A3 : The program may crash if some important data gets overwritten.		
		A4 : The array size would appropriately grow.		
Objec	tive Question			
81	81	When class B is inherited from class A, what is the order in which the constructers of those classes are called	4.0	1.00
		Al Class A first Class B next:		
		A2 Class B first Class A next		
		A3 Class B's only as it is the child class:		
		A4 Class A's only as it is the parent class:		
Objec	tive Question		1	

32	82	The output of this program	4.0	1.00
		int a = 10;		
		void main()		
		{		
		int $a = 20$;		
		cout << a << ::a;		
		}		
		A1 Syntax error		
		A2 10 20 :		
		Δ3		
		A3 20 10		
		A4 20 20		
		A4 20 20		
	tive Question			
33	83	What is the output of this program?	4.0	1.00
		#include		
		using namespace std;		
		int main()		
		{		
		int a;		
		a = 5 + 3 * 5;		
		cout << a;		
		return 0;		
		}		
		A1 35		
		A 2		
		A2 20		
		Δ3		
		A3 25		
		A4 20		
		A4 30 :		
	tive Question			
34	84		4.0	1.00

```
What will be output if you will compile and execute the following C code?
void main()
{static main;
int x;
x=call(main);
clrscr();
printf("%d",x);
getch();}
int call(int address){
address
s++;
return address;
}
\begin{array}{cc} A1 \\ \vdots \end{array} 0
A2
:
A3 Garbage value
A4 Compiler error
```

Objective Question

```
4.0
                                                                                                                                                                                         1.00
What will be the output of the following C code?
   #include <stdio.h>
  struct temp
   {int a;
  } s;
  void change(struct temp);
  main()
  {
s.a = 10;
      change(s);
      printf("%d\n", s.a);
  void change(struct temp s)
   {
      s.a = 1;
A1 Output will be 1
\begin{array}{c} A2 \\ \vdots \\ \end{array} \mbox{Output will be } 10
\begin{array}{c} A3 \\ \vdots \\ \end{array} \ {\bf Output \ varies \ with \ machine}
{{\rm A4}\atop{\rm :}}\ {\rm Output\ will\ be\ compile\ time\ error}
```

Objective (Ouestion			
86 86		DSL telcos provide which of the following services?	4.0	1.00
	<i>A</i> :	A1 Wired phone access		
	<i>A</i> :	A2 ISP		
		A3 Wired phone access and ISP		
	A	A4 Network routing and ISP		
Objective (Question			
87 87		The assembler directives which are the hints using some predefined alphabetical strings are given to	4.0	1.00
	<i>:</i>	A1 processor		
	<i>!</i>	A2 memory :		
		A3 assembler		
		A4 processor & assembler		
Objective (Ouestion			
88 88		Which of the following is right?	4.0	1.00
	<i>A</i> :	A1 A Context free language can be accepted by a deterministic PDA:		
		A2 union of 2 CFLs is context free		
	<i>I</i> :	A3 The intersection of two CFLs is context free:		
	<i>!</i>	A4 The complement of CFLs is context free		
Objective (Ouestion			
89 89		Let L denotes the language generated by the grammar S – OSO/00. Which of the following is true?	4.0	1.00
	<i>I</i> :	A1 L = O		
	1:	A2 L is regular but not O		
		A3 L is context free but not regular		

		A4 L is not context free					
	Dijective Question						
90	90	Which of the following genres does Hadoop produce?	4.0	1.00			
		A1 Distributed file system					
		A2 JAX-RS					
		A3 Java Message Service					
		A4 Relational Database Management System					
Obje	ctive Question						
91	91	Choose the recursive formula for the Fibonacci series.(n>=1)	4.0	1.00			
		$ \begin{array}{c} A1 \\ \vdots \\ F(n) = F(n+1) + F(n+2) \\ \end{array} $					
		A2 $F(n) = F(n) + F(n+1)$					
		A3 $F(n) = F(n-1) + F(n-2)$					
Obje	ctive Question						
92	92	Who manages the effects of change throughout the software process?	4.0	1.00			
		A1 Software project tracking and control:					
		A2 Software configuration management:					
		A3 Measurement :					
		A4 Technical review					
Obje	ctive Question						
93	93	Expand COCOMO	4.0	1.00			
		A1 COnstructive COst MOdel					
		A2 COmposition COst MOdel					
		A3 COmmon COntrol MOdel					

	A4 COnsumed COst MOde		
Objective Question			
94 94	Which one of the following is not suitable for accommodating change?	4.0	1.00
	Al Buid & Fix Models		
	A2 Prototyping Model		
	A3 RAD Model		
	A4 Waterfall Model		
Objective Question			
95	Requirement engineering process includes which of these steps?	4.0	1.00
	Al Feasibility study		
	A2 Requirement Gathering		
	A3 Software Requirement specification & Validation		
	A4 All of these		
Objective Question			
96 96	RUP stands for created by a division of	4.0	1.00
	Al Rational Unified Program, IBM		
	A2 Rational Unified Process, Infosys		
	A3 Rational Unified Process, IBM		
	A4 Rational Unified Program , Infosys		
Objective Question		1.0	1.00
97	Which one of these activities is not recommended to be performed by an independent SQA group?	4.0	1.00
	A1 Software configuration management procedures		
	A2 The tools and methods that support SQA actions and tasks		

II	II			
		A3 : Organizational roles and responsibilities relative to product quality		
		A4 Serve as the sole test team for any software produced:		
	tive Question			
98	98	Which of the following does not interrupt a running process?	4.0	1.00
		A1 A Device		
		A2 Timer		
		A3 Scheduler Process		
		A4 Power Failure:		
Objec	tive Question			
99	99	RPC provides a(an) on the client side, a separate one for each remote procedure.	4.0	1.00
		A1 Stub		
		A2 Identifier		
		A3 Name		
		A4 Process Identifier:		
Objec	tive Question			
100	100	The address of a page table in memory is pointed by	4.0	1.00
		A1 Stack Pointer:		
		A2 Page Table Base Register		
		A3 Page Register:		
		A4 Program Counter		